Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

Galaxies become more chaotic as they age, study suggests

Galaxies such as the Milky Way get more chaotic as they age, a study suggests (Owen Humphreys/PA)
Galaxies such as the Milky Way get more chaotic as they age, a study suggests (Owen Humphreys/PA)

Galaxies become more chaotic the older they get, a study suggests.

According to the research, age is the driving force in changing how stars move within galaxies.

Stars in galaxies start life rotating in an orderly pattern but in some the movement of stars is more random.

Until now scientists had been uncertain about what causes this, with the surrounding environment or the mass of the galaxy itself being possible reasons.

However, the new study found that neither of these things is the most important factor.

The findings show the tendency of the stars to have random motion is driven mostly by how old the galaxy is – things just get messy over time.

First author Professor Scott Croom, an Astro 3D researcher at the University of Sydney in Australia, said: “When we did the analysis, we found that age, consistently, whichever way we slice or dice it, is always the most important parameter.

“Once you account for age, there is essentially no environmental trend, and it’s similar for mass.

“If you find a young galaxy it will be rotating, whatever environment it is in, and if you find an old galaxy, it will have more random orbits, whether it’s in a dense environment or a void.”

Despite the findings, the experts suggest that previous work – which suggested environment or mass were more important factors – is not necessarily incorrect.

Young galaxies are star-forming super-factories, while in older ones, star formation ceases.

Second author Dr Jesse van de Sande, said: “We do know that age is affected by environment.

“If a galaxy falls into a dense environment, it will tend to shut down the star formation. So galaxies in denser environments are, on average, older.

“The point of our analysis is that it’s not living in dense environments that reduces their spin, it’s the fact that they’re older.”

Our own galaxy, the Milky Way, still has a thin star-forming disk, so is still considered a high spin rotational galaxy.

The research used data from observations made under the SAMI Galaxy Survey.

The SAMI instrument was built in 2012 by the University of Sydney and the Anglo-Australian Observatory (now Astralis).

It uses the Anglo-Australian Telescope, at Siding Spring Observatory, near Coonabarabran, New South Wales, which has surveyed 3,000 galaxies across a large range of environments.

The study allows astronomers to rule out many processes when trying to understand galaxy formation and so fine-tune models of how the universe has developed.

The findings are published in Monthly Notices of the Royal Astronomical Society.