Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

New research shows Earth can hold the key to finding life on other planets

Post Thumbnail

Earth holds the key to detecting life beyond our solar system, according to new research.

Scientists from the University of St Andrews and Cornell University have found that the way the Earth’s atmosphere evolved over time could be vital in finding life on exoplanets.

The new study, published in The Astrophysical Journal, explains that the way Earth’s atmosphere evolved corresponded to the appearance of different forms of life.

The team, led by Dr Sarah Rugheimer, astronomer and astrobiologist from the School of Earth and Environmental Sciences, studied different geological eras from Earth’s history.

The study focussed on its atmosphere at four distinct points in history — before microbes (3.9 billion years ago), after microbes and the first rise of oxygen (2 billion years ago), during the second rise of oxygen (800 million years ago), and Earth as it is today.

At each of these points, oxygen, methane and carbon dioxide were in drastically different abundances.

The new findings in to how life evolves in different atmospheres could lay the foundation for scientists to interpret early biosignatures and signs of life on Earth-size exoplanets.

Lead researcher Dr Rugheimer said: “We expect to find a myriad of exoplanets beyond even our wildest imagination.

“Even looking back at our own planet, the atmosphere has changed dramatically many times.

“By looking at the history of Earth and how different host star light would interact with a planet’s atmosphere, we can start to create a grid of models to help us understand future observations.”