Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

St Andrews scientists unearth secrets of Earth’s crust

Post Thumbnail

St Andrews researchers have helped unearth the secrets of Earth’s crust.

A team from the Fife university took part in a study of ancient volcanoes in Greenland, which could help solve the mystery of how Earth’s surface and mantle are connected.

The findings are published in the journal Nature Communications.

Our planet’s outermost layer, the crust, is made up of rigid tectonic plates which move around and collide at regions called subduction zones.

In areas of collision, crustal materials get transported into the deep mantle, and one of the grand challenges in earth sciences is to understand what happens to this crust and how long it resides in the mantle.

A team from St Andrews University carried out field work in remote Greenland.

At a few volcanoes on Earth geologists can find traces of these ancient crustal materials in the erupted lava. To date most of this work has focused on oceanic islands like Hawaii or the Canaries.

However, oceanic islands are only present at the surface of Earth for a few million years before they themselves subside and are subducted back into the mantle, and so can only provide a tiny snapshot of crustal recycling over the four billion years of Earth history.

The St Andrews team therefore investigated volcanoes in remote south-west Greenland which are billions of years old.

Researchers used cutting-edge isotope techniques to chemically fingerprint ancient crustal material.

The St Andrews team travelled by boat and helicopter to access remote outcrops in Greenland surrounded by glaciers.

They were able to show that magmas were tapping into ancient crust subducted into the mantle 500 million years before the volcanoes started erupting.

Once the team understood these processes in Greenland they compiled a global data on alkaline magma chemistry and were surprised to find that the vast majority contained a recycled crustal component in their magma source.

Lead author Dr Will Hutchison, from the School of Earth and Environmental Sciences at St Andrews, said: “Our key result is that the isotopes of alkaline magmas are highly variable and this suggests that their recycled crustal sources have changed through geological time.

“The beauty of our global dataset is that it extends back over two billion years and so these unique alkaline rocks represent an extremely powerful record for understanding crustal recycling over Earth history.”

“By carefully bringing together the igneous and sedimentary isotope records, this might allow us to understand how changing crustal input is tied to volcanic output, and ultimately build a much better understanding of what happens to tectonic plates once they get transported into the deep Earth.”